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Since the classical WENO schemes [27] might suffer from slight post-shock oscillations 
(which are responsible for the numerical residual to hang at a truncation error level) and 
the new high-order multi-resolution WENO schemes [59] are successful to solve for steady-
state problems, we apply these high-order finite volume multi-resolution WENO techniques 
to serve as limiters for high-order Runge-Kutta discontinuous Galerkin (RKDG) methods 
in simulating steady-state problems. Firstly, a new troubled cell indicator is designed to 
precisely detect the cells which would need further limiting procedures. Then the high-
order multi-resolution WENO limiting procedures are adopted on a sequence of hierarchical 
L2 projection polynomials of the DG solution within the troubled cell itself. By doing so, 
these RKDG methods with multi-resolution WENO limiters could gradually degrade from 
the optimal high-order accuracy to the first-order accuracy near strong discontinuities, 
suppress the slight post-shock oscillations, and push the numerical residual to settle down 
to machine zero in steady-state simulations. These new multi-resolution WENO limiters are 
very simple to construct and can be easily implemented to arbitrary high-order accuracy 
for solving steady-state problems in multi-dimensions.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, high-order Runge-Kutta discontinuous Galerkin (RKDG) methods [8–10,12] with new multi-resolution 
WENO limiters [58] are applied to solve steady Euler equations

{
f (u)x + g(u)y = 0,

u(x, y) = u0(x, y),
(1.1)
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on structured meshes. One way to get a numerical solution of (1.1) is to solve the associated unsteady Euler equations{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y),
(1.2)

and then drive the numerical residual to zero. High-order DG methods are applied to discretize the spatial variables and 
explicit, nonlinearly stable high-order Runge-Kutta methods [47,13] are adopted to discretize the temporal variable. Our 
main objective of this paper is to design a new troubled cell indicator to precisely detect the cells that need further limiting 
procedures and then adopt the arbitrary high-order spatial limiting procedures [58] for the RKDG methods to solve two-
dimensional steady-state problems.

If one confirms that the numerical residual of the unsteady Euler equations (1.2) is small enough, ideally at or close to 
the level of machine zero, the numerical solution of the steady Euler equations (1.1) is acceptable. The appearance of strong 
discontinuities in the simulation of (1.1) and (1.2) is the main difficulty. If the numerical solution has strong shocks or 
contact discontinuities, its physical variables change abruptly. Many high-resolution numerical schemes have been designed 
with the aim of controlling the oscillations by the use of artificial viscosities [24,25] or limiters [20,24,50]. Jameson et al. 
[23,26] proposed a third-order finite volume discretization method with dissipative terms and applied a Runge-Kutta time 
discretization method for solving the steady Euler equations. However, the main drawback of such schemes is that one often 
needs to adjust certain parameters in the artificial viscosity to maintain sharp shock transitions and to suppress oscillations 
near strong shocks. If limiters are used in designing numerical schemes, such numerical schemes could be very efficient in 
computing supersonic flows including strong shocks and contact discontinuities [20]. Yet the application of total variation 
diminishing (TVD) type limiters will degrade the accuracy of the numerical scheme to first-order near local smooth extrema 
[41], and the lack of sufficient smoothness of the numerical fluxes with the application of such limiters often results in 
the numerical residual not converging close to machine zero. Yee et al. [53] designed an implicit stable high-resolution 
TVD scheme and applied it to compute steady-state problems. Yee and Harten [52] designed TVD schemes to solve multi-
dimensional hyperbolic conservation laws and steady-state problems in curvilinear coordinates. In 1996, Jiang and Shu [27]
designed a fifth-order finite difference WENO scheme. When the classical high-order WENO schemes [27] are used to solve 
for the steady-state problems, their numerical residual often hangs at a truncation error level without settling down close to 
machine zero even after a long time iteration. Serna et al. [45] proposed a new limiter to reconstruct the numerical flux and 
improve the convergence of the numerical solution to steady states. Zhang et al. [57] found that slight post-shock oscillations 
would propagate from the region near the shocks downstream to the smooth regions and result in the numerical residual 
hanging at a high truncation error level rather than converging to machine zero. Zhang et al. [54] designed an upwind-
biased interpolation technique to improve the convergence of high-order WENO scheme for steady-state problems. But the 
numerical residual computed by such new schemes still could not converge close to machine zero for some two-dimensional 
steady-state problems [54]. In 2016, a novel high-order fixed-point sweeping WENO method [51] was proposed to simulate 
steady-state problems and could obtain better convergence property. However, the numerical residual could not settle down 
close to machine zero for some benchmark steady-state tests as before.

Now let us first review the history of the development of discontinuous Galerkin (DG) methods. In 1973, Reed and Hill 
[44] designed the first DG method in the framework of neutron transport. Due to its desirable properties, DG methods 
were also used extensively in different fields [14,21,29,33,40]. The hybrid DG/FV methods [15,16,36,55,56] which combine 
the advantageous features of both have become popular. Luo et al. [36,38] designed a new DG method for solving the 
compressible equations with a Taylor basis. If unsteady or steady-state problems are not smooth enough, their numerical 
solutions might contain oscillations near strong discontinuities and result in nonlinear instability in nonsmooth regions. 
One possible methodology to suppress oscillations is to apply nonlinear limiters to the high-order RKDG methods. A major 
development of the DG method with a classical minmod type total variation bounded (TVB) limiter was carried out by 
Cockburn et al. in a series of papers [8–12]. One type of limiters is based on slope modification, such as classical minmod
type limiters [8–10,12], the Barth-Jespersen limiter [2], the Venkatakrishnan limiter [50], the moment based limiter [3], and 
an improved moment limiter [5]. Such limiters belong to the slope type limiters and they could suppress oscillations at 
the price of possibly degrading numerical accuracy at smooth extrema. Another type of limiters is based on the essentially 
non-oscillatory (ENO), weighted ENO (WENO), and Hermite WENO (HWENO) methodologies [1,17,18,22,27,32,34,35,37,39], 
which can achieve uniform high-order accuracy in smooth regions and keep essentially non-oscillatory property near strong 
discontinuities. However, it is very difficult to implement RKDG methods with the applications of WENO limiters for solving 
steady-state problems. When such high-order RKDG methods are applied to compute steady Euler equations, the numerical 
residual could not converge close to machine zero and would hang at a higher truncation error level.

Likewise, when the classical fifth-order finite difference WENO scheme [27,46] with a third-order TVD Runge-Kutta time 
discretization [47] is used to solve for the steady-state problems, the numerical residual often hangs at the truncation 
error level instead of converging to machine zero even after a long time iteration. Yet the numerical residual of the new 
high-order finite difference and finite volume multi-resolution WENO schemes [60] could converge close to machine zero 
without introducing any slight post-shock oscillations on structured meshes. With the application of a series of unequal-
sized spatial stencils, the multi-resolution WENO schemes could gradually degrade from the optimal high-order accuracy to 
the first-order accuracy near strong discontinuities. We think this is the most important reason that the numerical residual 
of the classical fifth-order finite difference WENO scheme [27,46] could not convergence to a tiny number, since its spatial 
approximation could not degrade to the first-order accuracy with the application of equal-sized three-point spatial stencils. 
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Table 1
2D Euler equations. Case (1). RKDG methods with multi-resolution WENO limiters. Steady state. L1 and 
L∞ errors.

Second-order method Third-order method

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

20 × 20 9.04E-5 9.42E-4 3.43E-6 2.29E-5
30 × 30 4.01E-5 2.00 4.22E-4 1.98 1.02E-6 2.98 7.00E-6 2.92
40 × 40 2.25E-5 2.00 2.38E-4 1.99 4.33E-7 2.99 2.98E-6 2.96
50 × 50 1.44E-5 2.00 1.52E-4 1.99 2.22E-7 2.99 1.53E-6 2.98
60 × 60 1.00E-5 2.00 1.06E-4 1.99 1.28E-7 2.99 8.91E-7 2.99

Fourth-order method Fifth-order method

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

20 × 20 2.46E-8 2.59E-7 4.29E-10 3.08E-9
30 × 30 4.81E-9 4.03 5.12E-8 4.00 5.58E-11 5.03 4.10E-10 4.97
40 × 40 1.51E-9 4.02 1.62E-8 4.00 1.31E-11 5.02 9.77E-11 4.98
50 × 50 6.17E-10 4.02 6.64E-9 4.00 4.31E-12 5.01 3.21E-11 4.98
60 × 60 2.96E-10 4.01 3.20E-9 4.00 1.74E-12 4.97 1.29E-11 4.97

Table 2
2D Euler equations. Case (2). RKDG methods with multi-resolution WENO limiters. Steady state. L1 and 
L∞ errors.

Second-order method Third-order method

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

20 × 20 4.60E-4 3.62E-3 2.43E-5 1.82E-4
30 × 30 1.91E-4 2.17 1.61E-3 1.99 7.32E-6 2.96 5.54E-5 2.94
40 × 40 1.04E-4 2.09 9.10E-4 2.00 3.11E-6 2.98 2.36E-5 2.96
50 × 50 6.61E-5 2.05 5.83E-4 2.00 1.59E-6 2.98 1.21E-5 2.98
60 × 60 4.56E-5 2.03 4.05E-4 2.00 9.27E-7 2.99 7.04E-6 2.99

Fourth-order method Fifth-order method

Grid cells L1 error Order L∞ error Order L1 error Order L∞ error Order

20 × 20 4.51E-7 4.14E-6 1.27E-8 9.31E-8
30 × 30 8.77E-8 4.04 8.18E-7 4.00 1.64E-9 5.06 1.27E-8 4.90
40 × 40 2.75E-8 4.03 2.59E-7 4.00 3.85E-10 5.04 3.08E-9 4.95
50 × 50 1.12E-8 4.02 1.06E-7 4.00 1.25E-10 5.03 1.01E-9 4.97
60 × 60 5.40E-9 4.01 5.12E-8 4.00 5.02E-11 5.02 4.10E-10 4.98

So we extend high-order RKDG methods with high-order multi-resolution WENO limiters [58] to solve for the steady Euler 
equations with the application of a new troubled cell indicator on structured meshes. This new troubled cell indicator 
is very simple and works well for precisely detecting the cells that need further limiting procedure. To the best of our 
knowledge, it is the first type of high-order RKDG methods with WENO limiters that could confirm the numerical residual 
to converge close to machine zero for two-dimensional steady-state problems containing strong shocks at the boundary.

This paper is organized as follows. In Section 2, we give a brief review of the RKDG methods. In Section 3, we propose a 
new troubled cell indicator to detect the cells needing further limiting procedures and design arbitrary high-order limiting 
procedures using second-order, third-order, fourth-order, and fifth-order multi-resolution WENO limiters for steady-state 
computations as examples. In Section 4, several standard steady-state problems including sophisticated wave structures, 
both inside the computational fields and passing through the boundaries of the computational domain, are presented to 
demonstrate the good performance of the numerical residual converging close to machine zero. Concluding remarks are 
given in Section 5.

2. A brief review of the RKDG method

In this section, we first give a brief review of the RKDG methods for solving (1.2). The two-dimensional computational 
domain is divided by rectangular cells Ii, j = Ii × J j = [xi− 1

2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], i = 1, · · · , Nx and j = 1, · · · , N y with the 

cell sizes xi+ 1
2
− xi− 1

2
= �xi , y j+ 1

2
− y j− 1

2
= �y j , and cell centers (xi, y j) = ( 1

2 (xi+ 1
2
+ xi− 1

2
), 12 (y j+ 1

2
+ y j− 1

2
)). For example, 

we apply the local orthonormal basis over Ii, j , W k = {v(i, j)
(x, y), l = 0, ..., K ; K = (k+1)(k+2) − 1} (as shown in [58]):
h l 2
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Fig. 1. 2D Euler equations. Case (1). The evolution of the average numerical residual. The results of RKDG methods with multi-resolution WENO limiters. 
From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. Different numbers indicate different mesh levels 
from 20 × 20 to 60 × 60 cells.

v(i, j)
0 (x, y) = 1,

v(i, j)
1 (x, y) = √

12(
x−xi
�xi

),

v(i, j)
2 (x, y) = √

12(
y−y j
�y j

),

v(i, j)
3 (x, y) = √

180
(
(

x−xi
�xi

)2 − 1
12

)
,

v(i, j)
4 (x, y) = √

12(
x−xi
�xi

)
√

12(
y−y j
�y j

),

v(i, j)
5 (x, y) = √

180
(
(

y−y j
�y j

)2 − 1
12

)
,

v(i, j)
6 (x, y) = √

2800
(
(

x−xi
�xi

)3 − 15
100 (

x−xi
�xi

)
)

,

v(i, j)
7 (x, y) = √

180
(
(

x−xi
�xi

)2 − 1
12

)√
12(

y−y j
�y j

),

v(i, j)
8 (x, y) = √

12(
x−xi
�xi

)
√

180
(
(

y−y j
�y j

)2 − 1
12

)
,

v(i, j)
9 (x, y) = √

2800
(
(

y−y j
�y j

)3 − 15
100 (

y−y j
�y j

)
)

,

(2.1)
...
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Fig. 2. 2D Euler equations. Case (2). The evolution of the average numerical residual. The results of RKDG methods with multi-resolution WENO limiters. 
From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. Different numbers indicate different mesh levels 
from 20 × 20 to 60 × 60 cells.

The two-dimensional solution uh(x, y, t) ∈ W k
h can be written as:

uh(x, y, t) =
K∑

l=0

u(l)
i, j(t)v(i, j)

l (x, y), (x, y) ∈ Ii, j, (2.2)

and the degrees of freedom u(l)
i, j(t) are the moments defined by

u(l)
i, j(t) = 1

�xi�y j

∫
Ii, j

uh(x, y, t)v(i, j)
l (x, y)dxdy, l = 0, ..., K . (2.3)

In order to determine the approximation solution, we evolve the degrees of freedom u(l)
i, j(t):

d
dt u(l)

i, j(t) = 1
�xi�y j

(∫
Ii, j

(
f (uh(x, y, t)) ∂

∂x v(i, j)
l (x, y) + g(uh(x, y, t)) ∂

∂ y v(i, j)
l (x, y)

)
dxdy

− ∫
I j

(
f̂ (uh(xi+ 1

2
, y, t))v(i, j)

l (xi+ 1
2
, y) − f̂ (uh(xi− 1

2
, y, t))v(i, j)

l (xi− 1
2
, y)

)
dy

− ∫
Ii

(
ĝ(uh(x, y j+ 1

2
, t))v(i, j)

l (x, y j+ 1
2
) − ĝ(uh(x, y j− 1

2
, t))v(i, j)

l (x, y j− 1
2
)
)

dx
)

,

l = 0, ..., K ,

(2.4)
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Fig. 3. The shock reflection problem. 15 equally spaced density contours from 1.10 to 2.58. The results of RKDG methods with multi-resolution WENO 
limiters. From top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 120 × 30 cells.

where the “hat” terms are the numerical fluxes ( f̂ and ĝ are monotone fluxes for the scalar case and exact or approximate 
Riemann solvers for the system case). The integrals in (2.4) are computed by applying suitable numerical quadratures. The 
semi-discrete scheme (2.4) can be discretized in time by a third-order TVD Runge-Kutta time discretization method [47]:

⎧⎪⎪⎨
⎪⎪⎩

u(1) = un + �tL(un),

u(2) = 3
4 un + 1

4 u(1) + 1
4 �tL(u(1)),

un+1 = 1
3 un + 2

3 u(2) + 2
3 �tL(u(2)).

(2.5)

In order to explain how to apply a nonlinear limiter for the RKDG methods, we adopt a forward Euler time discretization 
of (2.4) as an example. Starting from a solution un

h ∈ W k
h at time level n, we limit it to obtain a new function un,new before 

advancing it to the next time level. We need to find un+1 ∈ W k which satisfies
h h
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Fig. 4. The shock reflection problem. Troubled cells. Squares denote cells which are identified as troubled cells subject to multi-resolution WENO limiting 
procedures at the last time step. From top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 120 × 30 cells.

∫
Ii, j

un+1
h −un,new

h
�t v dxdy − ∫

Ii, j

(
f (un,new

h )vx + g(un,new
h )v y

)
dxdy

+ ∫
I j

(
f̂ (un,new

h |x=x
i+ 1

2
)v(x−

i+ 1
2
, y) − f̂ (un,new

h |x=x
i− 1

2
)v(x+

i− 1
2
, y)

)
dy

+ ∫
Ii

(
ĝ(un,new

h |y=y
j+ 1

2
)v(x, y−

j+ 1
2
) − ĝ(un,new

h |y=y
j− 1

2
)v(x, y+

j− 1
2
)

)
dx = 0,

(2.6)

for any test functions v(x, y) that defined in W k
h . We will narrate how to obtain the two-dimensional un,new

h |Ii, j in details. 
For simplicity, we omit the sup-indices in un,new

h |Ii, j , if it does not cause confusion in the following.

3. A new troubled cell indicator and multi-resolution WENO limiter

First of all, we design a new troubled cell indicator to detect the cells that may contain strong discontinuities and 
in which the multi-resolution WENO limiter is applied. Other trouble cell detectors can of course also be used for 
solving unsteady problems, but many of them do not work well in solving steady-state problems, according to our ex-
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Fig. 5. The shock reflection problem. The evolution of the average numerical residual of RKDG methods with multi-resolution WENO limiters. From left to 
right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 120 × 30 cells.

periments. With the application of (2.2), we could define uh |Ii, j = uh(x, y, t), for (x, y) ∈ Ii, j and obtain uh|Ii, j = u(0)
i, j (t) +∑K

l=1 u(l)
i, j(t)v(i, j)

l (x, y), where u(0)
i, j (t) = 1

�xi�y j

∫
Ii, j

uh|Ii, j dxdy and similar formulas of uh|I� defined in other intermediate 
neighboring four cells of Ii, j . In two-dimensional steady-state cases, we define the cell Ii, j to be a troubled cell when

maxI�∈{Ii±1, j ,Ii, j±1}
(∣∣∣∫I�

uh|I�dxdy − ∫
Ii, j

uh|Ii, j dxdy
∣∣∣)

hi, j · minI�∈{Ii±1, j ,Ii, j±1,Ii, j}
(∣∣∣∫I�

uh|I�dxdy
∣∣∣) ≥ Ck, (3.1)

where hi, j is the radius of the circumscribed circle in cell Ii, j and Ck is a constant, usually, we take Ck = 1 as specified in 
[28]. We can confirm the fact that∣∣∣∣∣∣∣

∫
I�

uh|I�dxdy −
∫

Ii, j

uh|Ii, j dxdy

∣∣∣∣∣∣∣
=

{
O (h3

i, j), in smooth regions,
O (1), near a discontinuity.

(3.2)

Hence the left hand side term of (3.1) converges to zero as hi, j converges to zero in smooth regions, whereas it converges 
to infinity near a discontinuity. By using (3.1), we do not need to adopt different values of Ck to compute multi-dimensional 
problems as in [19] and set Ck = 1 for the computation of all the benchmark steady-state problems. This new troubled 
cell indicator is simple and robust enough in simulating steady-state problems without identifying excessive troubled cells 
inside the computational field. We emphasize the fact that many other troubled cell indicators [8–12,28,42,43,58] are not 
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Fig. 6. A supersonic flow past three plates with an attack angle. 30 equally spaced pressure contours from 0.02 to 0.24 of RKDG methods with multi-
resolution WENO limiters. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 100 cells.

good at precisely detecting troubled cells for solving steady-state problems and result in the numerical residual to hang at 
a truncation error level instead of converging close to machine zero.

Hereafter, we give details of the multi-resolution WENO limiter for the two-dimensional scalar case. The crucial ingredi-
ent is to reconstruct a new polynomial on the troubled cell Ii, j which is a convex combination of polynomials of different 
degrees: the DG solution polynomial on this cell and a sequence of hierarchical “modified” solution polynomials based on 
the L2 projection methodology. For simplicity, we also rewrite uh(x, y, t) to be uh(x, y) ∈ W k

h in the following, if it does not 
cause confusion. A series of unequal degree polynomials q�(x, y), � = 0, ..., k are constructed on the troubled cell Ii, j :∫

Ii, j

q�(x, y)v(i, j)
l (x, y)dxdy =

∫
Ii, j

uh(x, y)v(i, j)
l (x, y)dxdy, l = 0, ...,

(� + 1)(� + 2)

2
− 1. (3.3)

Based on the application of the local orthonormal basis over Ii, j , the reconstructed polynomials q�(x, y), � = 0, ..., k are very 

simple. Since the two-dimensional solution is written in (2.2), we can directly obtain q�(x, y) = ∑ (�+1)(�+2)
2 −1

l=0 u(l)
i, j(t)v(i, j)

l (x, y), 
� = 0, ..., k, respectively. Then we obtain equivalent expressions for these constructed polynomials of different degrees. To 
keep consistent notation, we will denote p0,1(x, y) = q0(x, y). Following the original ideas for classical CWENO schemes 
[6,30,31], we obtain polynomials p�,�(x, y), � = 1, ..., k through

p�,�(x, y) = 1
q�(x, y) − γ�−1,�

p�−1,�(x, y), � = 1, ...,k, (3.4)

γ�,� γ�,�
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Fig. 7. A supersonic flow past three plates with an attack angle. Squares denote cells which are identified as troubled cells subject to multi-resolution WENO 
limiting procedures at the last time step. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 100
cells.

with γ�−1,� + γ�,� = 1 and γ�,� �= 0, together with polynomials p�,�+1(x, y), � = 1, ..., k − 1 through

p�,�+1(x, y) = ω�,� p�,�(x, y) + ω�−1,�p�−1,�(x, y), � = 1, ...,k − 1, (3.5)

with ω�−1,� +ω�,� = 1. In (3.4), the γ ’s are the linear weights and we choose them as γ�−1,� = 0.01 and γ�,� = 0.99 for the 
numerical computations of all steady-state problems. In (3.5), the ω’s are the nonlinear weights which will be defined later. 
The smoothness indicators β�,�2 are computed by using the same recipe as in [27]:

β�,�2 =
κ∑

|α|=1

∫
Ii, j

(
�xi�y j

)|α|−1
(

∂ |α|

∂xα1∂ yα2
p�,�2(x, y)

)2

dx dy, � = �2 − 1, �2; �2 = 1, ...,k, (3.6)

where κ = �, α = (α1, α2), and |α| = α1 + α2, respectively. The only exception is β0,1, which is specified in [58]. We adopt 
the WENO-Z recipe as shown in [4,7] to compute the nonlinear weights [58]. Finally, the new reconstruction polynomial is 
defined as

unew
h |Ii, j =

�2∑
�=�2−1

ω�,�2 p�,�2(x, y), �2 = 1, ...,k, (3.7)

for obtaining (k+1)th-order spatial approximation. The two-dimensional system cases [58] are omitted here to save space.
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Fig. 8. A supersonic flow past three plates with an attack angle. The evolution of the average numerical residual of RKDG methods with multi-resolution 
WENO limiters. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 100 cells.

Remarks. In this paper, we apply the new multi-resolution WENO schemes as limiters for high-order RKDG methods to 
compute steady-state problems. The crucial advantages of these multi-resolution WENO limiters are the compactness of 
their spatial stencils, which essentially only contain the troubled cell itself with information from intermediate neighboring 
four cells used only to determine the smoothness indicator of the zeroth degree polynomial in the hierarchy. In order to 
keep the advantages of the compact stencil, we use orthogonal basis and L2 projection to define the sequence of hierarchical 
polynomials of different degrees in the troubled cell itself. This methodology facilitates the achievement of the conservation 
and the maintenance of as much information of the original polynomial in the troubled cell as possible through the mech-
anism of a gradual degradation to zeroth degree polynomial in a L2 projection fashion with the spatial WENO procedure. 
Numerical experiments on benchmark steady-state problems specified in next section indicate the good behavior of the 
high-order RKDG methods with such multi-resolution WENO limiters.

4. Numerical tests

In this section, we perform numerical experiments to test the steady-state computation performance of high-order RKDG 
methods with multi-resolution WENO limiters described in the previous sections. The CFL number is 0.3 for the second-
order (P 1), 0.18 for the third-order (P 2), 0.1 for the fourth-order (P 3), and 0.08 for the fifth-order (P 4) RKDG methods, 
respectively. For solving two-dimensional steady-state problems, the time step is chosen according to the CFL condition

�t max1≤i≤N

( |μi| + ci + |νi| + ci
)

≤ C F L,

hi hi
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Fig. 9. A supersonic flow past three long plates problem. 30 equally spaced pressure contours from 0.031 to 0.161 of RKDG methods with multi-resolution 
WENO limiters. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 200 cells.

in which μi is x-directional velocity, νi is y-directional velocity, ci =
√

γ pi
ρi

, hi is the diameter of the inscribed circle of the 
target cell, and N is the total number of the cells. The single index i is used here to list all cells in the computational field. 
Then the average numerical residual is defined as

ResA =
N∑

i=1

|R1i| + |R2i| + |R3i| + |R4i|
4 × N

, (4.1)

where R∗i are the local numerical residuals of different cell averages of the conservative variables, that is, R1i = ∂ρ
∂t |i ≈

ρn+1
i −ρn

i
�t , R2i = ∂(ρμ)

∂t |i ≈ (ρμ)n+1
i −(ρμ)n

i
�t , R3i = ∂(ρν)

∂t |i ≈ (ρν)n+1
i −(ρν)n

i
�t , and R4i = ∂ E

∂t |i ≈ En+1
i −En

i
�t , respectively. All cells are set 

to be troubled cells in Example 4.1, so as to test numerical accuracy when the new type of multi-resolution WENO limiting 
procedure is enacted in the whole computational field. Then we set the constant Ck in (3.1) to be 1 in other steady-state 
problems.

Example 4.1. In this accuracy example, we study two-dimensional Euler equations

∂

∂t

⎛
⎜⎜⎝

ρ
ρμ
ρν
E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρμ

ρμ2 + p
ρμν

μ(E + p)

⎞
⎟⎟⎠ + ∂

∂ y

⎛
⎜⎜⎝

ρν
ρμν

ρν2 + p
ν(E + p)

⎞
⎟⎟⎠ = 0, (4.2)
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Fig. 10. A supersonic flow past three long plates problem. Squares denote cells which are identified as troubled cells subject to multi-resolution WENO 
limiting procedures at the last time step. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 200
cells.

with the exact steady-state solutions given by (1) ρ(x, y, ∞) = 1 + 0.2 sin(x − y), μ(x, y, ∞) = 1, ν(x, y, ∞) = 1, and 
p(x, y, ∞) = 1; (2) ρ(x, y, ∞) = 1 + 0.2 sin(2(x − y)), μ(x, y, ∞) = 1, ν(x, y, ∞) = 1, and p(x, y, ∞) = 1. We take the 
numerical initial conditions as the exact solution projected onto the grid, and then march to numerical steady states. The 
computational domain is (x, y) ∈ [0, 2] × [0, 2], and the exact steady-state solutions are applied as boundary conditions in 
both directions. The convergence history of the numerical residual (4.1) as a function of time is shown in Fig. 1 and Fig. 2, in 
which we can see that the numerical residual settles down to tiny numbers close to machine zero. The L1 and L∞ errors and 
orders of accuracy at steady state are listed in Table 1 and Table 2, from which we can see that the designed second-order, 
third-order, fourth-order, and fifth-order accuracies are achieved for RKDG methods with multi-resolution WENO limiters.

Example 4.2. Shock reflection problem. The computational domain is a rectangle of length 4 and height 1. The boundary 
conditions are that of a reflection condition along the bottom boundary, supersonic outflow along the right boundary, and 
Dirichlet conditions on the other two sides:

(ρ,μ,ν, p)T ) =
{

(1.0,2.9,0,1.0/1.4)T |(0,y,t)T ,

(1.69997,2.61934,−0.50632,1.52819)T |(x,1,t)T .

Initially, we set the solution in the entire domain to be that at the left boundary. We show the density contours with 15 
equally spaced contour lines from 1.10 to 2.58 when steady states are reached for different orders of RKDG methods with 
multi-resolution WENO limiters in Fig. 3. The troubled cells identified at the final time step are shown in Fig. 4. We can 
clearly observe that the fifth-order RKDG method with the associated multi-resolution WENO limiter gives better resolution 
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Fig. 11. A supersonic flow past three long plates problem. The evolution of the average numerical residual of RKDG methods with multi-resolution WENO 
limiters. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 100 × 200 cells.

than that of the lower order RKDG methods, especially for obtaining sharp shock transitions. The convergence history of the 
numerical residual (4.1) as a function of time is shown in Fig. 5. It can be observed that the average residual of second-
order, third-order, fourth-order, and fifth-order RKDG methods with multi-resolution WENO limiters can settle down to a 
value around 10−11.5, close to machine zero.

Example 4.3. This problem is a supersonic flow past three plates with an attack angle of α = 10◦ . The free stream Mach 
number is M∞ = 3. The ideal gas goes from the left toward the plates. The initial conditions are set as p = 1

γ M2∞
, ρ = 1, 

μ = cos(α), and ν = sin(α). The computational field is [0, 10] × [−5, 5]. Three plates are set at x ∈ [1, 2] with y = −2, 
x ∈ [1, 2] with y = 0, and x ∈ [1, 2] with y = 2. The slip boundary condition is imposed on three plates. The physical 
values of the inflow and outflow boundary conditions are applied in different directions. The results are shown when the 
numerical solutions reach their steady states. We show 30 equally spaced pressure contours from 0.02 to 0.24 computed 
by the different orders of RKDG methods with multi-resolution WENO limiters in Fig. 6. The troubled cells identified at 
the final time step are shown in Fig. 7. The convergence history of the numerical residual (4.1) is shown in Fig. 8. More 
noticeably, the average numerical residual of the second-order, third-order, fourth-order, and fifth-order RKDG methods with 
associated multi-resolution WENO limiters can settle down to a tiny value around 10−13, close to machine zero. Although 
the boundary is very far away from the three plates, the shock waves, the rarefaction waves, and their interaction waves 
propagate to the far field boundaries. It often causes the numerical residual of high-order RKDG methods with WENO 
limiters from settling down to machine zero. But it does not seem to cause much trouble for the different orders of RKDG 
methods with multi-resolution WENO limiters specified in this paper.
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Fig. 12. The self-similar Mach reflection problem. 40 equally spaced pressure contours from 1.02 to 1.36 of RKDG methods with multi-resolution WENO 
limiters. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 200 × 100 cells.

Fig. 13. The self-similar Mach reflection problem. Squares denote cells which are identified as troubled cells subject to multi-resolution WENO limiting 
procedures at the last time step. From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 200 × 100 cells.

Example 4.4. This problem is a supersonic flow past three long plates with an attack angle of α = 10◦ . The free stream 
Mach number is M∞ = 3. The ideal gas goes from the left toward three long plates. The initial condition is set as p = 1

γ M2∞
, 

ρ = 1, μ = cos(α), and ν = sin(α). The computational field is [0, 5] × [−5, 5]. Three long plates are set at x ∈ [2, 5] with 
y = −2, x ∈ [2, 5] with y = 0, and x ∈ [2, 5] with y = 2. The slip boundary condition is imposed on three long plates. The 
physical values of the inflow and outflow boundary conditions are applied at the left, right, bottom, and top boundaries. 
The results are shown when the numerical solutions have settled down to their steady states. We show 30 equally spaced 
pressure contours from 0.031 to 0.161 computed by the different orders of RKDG methods with multi-resolution WENO 
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Fig. 14. The self-similar Mach reflection problem. The evolution of the average numerical residual of RKDG methods with multi-resolution WENO limiters. 
From left to right and top to bottom: second-order, third-order, fourth-order, and fifth-order methods. 200 × 100 cells.

limiters in Fig. 9. The troubled cells identified at the final time step are shown in Fig. 10. The convergence history of 
the numerical residual (4.1) is shown in Fig. 11. We can find that the average numerical residual of high-order RKDG 
methods with multi-resolution WENO limiters settles down to a value around 10−12.5, close to machine zero. In this case, 
the shocks, the rarefaction waves, and their interactions all pass through the right boundary. It is one of the reasons that 
numerical residuals for many high-order schemes such as other high-order RKDG methods with WENO/HWENO limiters do 
not converge to machine zero, however this does not seem to be the case for the RKDG methods with multi-resolution 
WENO limiters in this paper.

Example 4.5. We compute the numerical solution of (4.2) with U (x, y, t) = (ρ, μ, ν, p)T , in which U (x, y, 0) ={
U R ≡ (ρR ,0,0, pR)T , if x > 0,

U L ≡ (ρL,μL,0, pL)
T , if x < 0,

where the left-hand and right-hand states are connected by the Rankine-Hugoniot jump 

conditions for a shock with Mach number M. The boundary condition on the wedge wall is (μ, ν) · �n = 0 and �n is the 
unit normal vector at the wall for a shock Mach number equal to 1.075 and a wedge angle θ equal to 15 degrees in 
[49]. These data correspond to the parameter a ≈ 1

2 in the UTSDE model specified in [48]. This problem is well outside 
the range for which regular reflection can occur. However, Mach reflection is also not possible for shocks this weak, and 
so this example illustrates a classic triple point paradox. Since this problem is self-similar, the solution depends on the 
similarity variables ξ = x

t and η = y
t , respectively. We rewrite (4.2) as Ut + Fx + G y = 0, where U = (ρ, ρμ, ρν, E)T , 

F = (ρμ, ρμ2 + p, ρμν, μ(E + p))T , and G = (ρν, ρμν, ρν2 + p, ν(E + p))T . Then we write it in terms of ξ , η, and a 
pseudo time variable τ = log t . We can obtain Uτ + (F − ξU )ξ + (G − ηU )η + 2U = 0. In these self-similar variables, the 
Euler system has the form of the unsteady equations (4.2) with modified flux functions and a source term. On the condition 
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that τ → +∞, the solution of Uτ + (F − ξU )ξ + (G − ηU )η + 2U = 0 converges to a pseudo steady, self-similar solution 
that satisfies (F − ξU )ξ + (G − ηU )η + 2U = 0. In our computations, we rotate the original computational domain specified 
in [49] with a angle θ equal to 15 degrees, and set the new computational domain as (ξ, η) ∈ [−1, 3] × [0, 2], use ρR = 1.4
and pR = 1, and determine the values U L behind the shock from the Rankine-Hugoniot conditions. The reflection boundary 
condition is used at the wall, which for the rest of the bottom boundary (the part from ξ = −1 to ξ = 1

6 ), the exact post-
shock condition is imposed. At the top boundary is the exact motion of the Mach 1.075 shock. The results are shown when 
the numerical solutions have settled down to their steady states. We show 40 equally spaced pressure contours from 1.02 to 
1.36 computed by the different orders of RKDG methods with multi-resolution WENO limiters in Fig. 12. The troubled cells 
identified at the final time step are shown in Fig. 13. The convergence history of the numerical residual (4.1) is shown in 
Fig. 14. We can find that the average numerical residual of high-order RKDG methods with multi-resolution WENO limiters 
settles down to a value around 10−13.5, close to machine zero.

5. Concluding remarks

In this paper, we design a new troubled cell indicator and adopt our high-order finite volume multi-resolution WENO 
schemes [59] to serve as limiters for high-order RKDG methods to solve two-dimensional steady-state problems on struc-
tured meshes. The general framework of such multi-resolution WENO limiters for high-order RKDG methods is to first 
design a new methodology to detect troubled cells subject to the multi-resolution WENO limiting procedure, then to con-
struct a sequence of hierarchical L2 projection polynomial solutions of the DG methods completely restricted to the troubled 
cell itself in a WENO fashion. To the best of our knowledge, it is the first time that numerical residual for second-order, 
third-order, fourth-order, and fifth-order RKDG methods with multi-resolution WENO limiters can settle down close to ma-
chine zero for benchmark steady-state problems, including some problems containing strong shocks, contact discontinuities, 
rarefaction waves, their interactions, and associated compound sophisticated waves passing through boundaries. The results 
in this paper indicate that these new high-order RKDG methods with multi-resolution WENO limiters have a good potential 
in computing the steady-state problems, than other WENO type limiters for the RKDG methods together with some classical 
troubled cell indicators [8–12,28,42,43,58].

The framework of this new type of multi-resolution WENO limiters for arbitrary high-order RKDG methods would be 
particularly efficient and simple for solving steady-state problems on unstructured meshes (such as triangular meshes or 
tetrahedral meshes), and the study of which is our ongoing work.
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